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Abstract     

This article presents a modeling of the dynamics of the DEF-ALFA autonomous underwater vehicle 

designed within the search project PID UNDEFI 484/2019 of the National Defense University. This paper 

proposes a previous study of the general characteristics of AUVs regarding their dynamic behavior and 

proposes a working model to apply it in the DEF-ALFA. On the basis of the developed model, the 

parameters of the vehicle were obtained and a simulation was carried out, allowing the realization of 

future studies to evaluate the performance of the DEF-ALFA and propose improvements. 

 

I. INTRODUCTION 

 

1. Fundamentals 

An autonomous underwater vehicle is a device with a propulsion system and a control system that allow it 

to move through water in three dimensions, with the ability to follow pre-programmed trajectories. The 

vast majority of these vehicles are equipped with on-board sensors, which makes it possible to measure 

different ocean parameters, referencing them both spatially and temporally. They can be programmed to 

navigate at a constant pressure or depth or vary their depth autonomously. They have a high data 

collection capacity with high frequency sampling, which makes them highly productive. 

One of the great advantages of these underwater vehicles is their autonomy, since they contain their own 

energy source, generally based on rechargeable batteries, which allows them to work continuously. By not 

requiring a line of communication between the vehicle and the surface, it is possible to minimize 

communication problems, which are of great importance in the aquatic environment. These properties 

make them useful in scientific exploration tasks, oceanographic sampling, and underwater exploration, 

being in many cases the best option for some tasks, since they do not suffer from the limitations imposed 

by cables, as in the case of underwater robots. 

Obtaining the dynamic model of an autonomous underwater vehicle makes it possible to design and 

implement control strategies and navigation systems that make it possible to carry out different 

programmed missions autonomously. For the dynamic modeling of these vehicles, the determination of 

coefficients that allow expressing the linear and non-linear relationships of the forces and moments that 

act on the vehicle is required. 

Although the analytical and semi-empirical methods used to obtain models based on physical principles 

make it possible to determine the vast majority of model parameters, not all coefficients can be 
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determined analytically. That is why these methods need to be combined with other techniques, in order 

to find the numerical values of some of those parameters. 

 

2. -Kinematics of an autonomous underwater vehicle 

A mathematical analysis based on the static and dynamic behavior of an autonomous underwater vehicle 

AUV (for the acronym in English of Autonomous Underwater Vehicle), allows simulating and controlling 

the behavior of these marine vehicles in the water. In the following study, the mobile under study is 

considered as a rigid solid, this assumption allows us not to take into account the forces that act in a 

specific way, between the mass elements of the vehicle, for its dynamic analysis. To obtain the equations 

that govern the movement of a rigid body, it is necessary to define an inertial reference system. In this 

case, the Earth is taken as the inertial system reference, assuming that the acceleration of a point on the 

Earth's surface, due to its rotation, can be neglected in the case of these underwater vehicles. This 

approximation is valid, in this situation, since the movement of the Earth has little effect on marine 

vehicles that move at low speed, such as AUVs) [1]. According to these considerations, the inertial 

reference system originating from an OT point in solidarity with the Earth is defined, where the X axis 

points to the north, the Y axis to the east and the Z axis to the center of the Earth. 

If an AUV is considered as a rigid body with six degrees of freedom 6(DOF), where these six degrees of 

freedom are determined by the independent displacements and rotations of the vehicle [3], three 

coordinates will be necessary to determine its position and three to know its orientation. In this way, the 

first three coordinates describe the position and linear movement of the vehicle, and the other three 

coordinates make it possible to determine its orientation and rotary movement. 

Normally in underwater vehicles, linear and angular velocities are associated with a mobile coordinate 

system located in the vehicle and their time derivatives are measured with respect to the reference frame 

of the body. Thus, it is useful to define a coordinate system associated with the AUV, originating from a 

point belonging to the vehicle. Thus, the coordinate system A = [�⃗� A ,𝐲 A, 𝐳 A]  is defined in solidarity with 

the AUV, with origin at its center of mass (OA), where the axes xA; yA and zA are made to coincide with 

the axes of inertia of the AUV, which facilitates dynamic analysis. The axis �⃗� A is taken coincident with 

the direction of advance of the AUV, ,𝐲 A is orthogonal to �⃗� A and is positive towards starboard in the 

horizontal plane, while 𝐳 A  is oriented downward and orthogonal to the �⃗� A ,𝐲 A plane, as shown in Figure 

1. 

To study the position, velocity and acceleration of the vehicle, it is necessary to convert the parameters. 

 

Figura 1 

2.1 Kinematic equations 

The kinematic equations can be expressed in vectorial form using the vectorial representation proposed 

by Fossen [1] and Antonelli [2] among others, for the approach of linear and non-linear equations, which 

describe the dynamics of the AUV. The six components of position and attitude of the AUV, which 

describe the movement of a marine vehicle in the six degrees of freedom 6 DOF, referred to the inertial 

frame, are: 
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η = [x, y, z, φ, θ, ψ] T 

 η = [
𝜂1

𝜂2
]        con η1= [x,y,z]T                y          η2 = [φ, θ, ψ] T                                                           (1) 

 

where η is the position and orientation vector with coordinates in the inertial reference system. The vector 

η1 makes it possible to determine the position of the vehicle with respect to the fixed ground system and 

η2 determines its orientation with respect to it, given by the Euler angles (φ, θ, ψ). [3] 

 

The movements of the AUV referred to the frame fixed to the body of the vehicle, are thus defined by the 

six velocity components, as indicated in Figure 1: 

υ = [u, v, w, p, q, r] T                                   

being: u advance (surge), v sway (sway), w vertical displacement (heaven), p roll (roll), q pitch (pitch), 

and r (yaw), 

 

Then the velocity of the AUV, in coordinates of the body's frame of reference, can be represented as: 

υ = [
𝑣1

𝑣2
]   , con   υ1 = [𝑢 𝑣 𝑤]T y       υ2 = [𝑝 𝑞 𝑟]T                                                         (2) 

 

where υ1 is the linear velocity of the vehicle, measured in body frame coordinates, and  υ2 represents the 

angular velocity of the AUV, measured in the frame of reference attached to the vehicle. From now on, 

the notation ω will be used for the vector υ2, in such a way that: ω = [𝑝 𝑞 𝑟]T.   

The notation used for each variable according to SNAME (1950) [6] can be summarized in Table 1. 

 

 

Table 1: Notation used for each variable according to SNAME (1950) 

  

These components are relative to a coordinate system moving with the current of the liquid where the 

vehicle is submerged. If υ is considered as the relative speed of the axles attached to the vehicle with 

respect to the flow in which it moves, and it can be assumed that the axles move at a speed υc due to the 

current, with these considerations the speed of the vehicle could be expressed. AUV with respect to 

inertial axes, such as: 

 

�̇�= d(η) / d(t)     with                                          �̇�=  Јη(υ + υc )                                                                  (3) 

 



 

 

 

 

Research Journal of Pure Science and Technology E-ISSN 2579-0536 P-ISSN 2695-2696  

Vol 6. No. 1 2023 www.iiardjournals.org 

 

 

 

 

 

IIARD – International Institute of Academic Research and Development 

 

Page 30 

where,  Јη  is the rotation matrix between both axes [1]. 

2.2 Rotation Matrix 

To study the position, velocity and acceleration of the vehicle in both frames of reference, the Euler angle 

transformation is used: roll (), pitch (), yaw () [5]. Euler established that two independent 

orthonormal coordinate frames (with a common origin) can be related by a succession of no more than 

three rotations about the coordinate axes. This means that if the sequence of axes to be rotated is known, 

only three Euler angles are needed to fully define the total rotation. Using Euler's theorem, it is possible to 

see a sequence of rotations about different axes as a single rotation around an axis, since each rotation, 

having a matrix associated with it, means that the sequence of rotations has, in turn, a single matrix 

associated with it. . These matrices describe the mutual orientation between the two coordinate systems 

and their column vectors are the direction cosines of the axes of one coordinate system with respect to 

another. Using this property for the three Euler angles φ, θ, and y ψ, which allow determining the 

orientation of the vehicle with respect to the inertial frame. 

Carrying out this sequence of rotations for each plane that determines each pair of orthogonal axes, the 

fundamental rotation matrices are obtained. [3].  

 

R(x,ϕ) = [

1 0 0
0 𝐶𝜙 −𝑆𝜙

0 𝑆𝜙 𝐶𝜙

] ;  R(y,θ) = [
𝐶𝜃 0 𝑆𝜃

0 1 0
−𝑆𝜃 0 𝐶𝜃

]  ; R(z,ψ) = [
𝐶𝛹 −𝑆𝛹 0
𝑆𝛹 𝐶𝛹 0
0 0 1

]           

 

Where  Sx=sen (x)   y   Cx=cos(x). 

 

The matrix representing these rotations is mathematically equivalent to: R(φ, θ, ψ) = R(x, φ) R(y, θ) R(z, 

ψ). Now, the rotation matrix R(φ, θ, ψ)  is an orthogonal matrix, therefore R-1= RT, which implies that the 

same result is obtained by transforming a vector of the frame of reference fixed to the body to inertial 

frame, reversing the order of rotation. Which is mathematically equivalent to performing the following 

product, R = Rz,ψ Ry,θ Rx,φ . This is how the transformation R is expressed, which allows relating the 

linear velocity vector in an inertial reference frame to the reference frame of the body and the rotation 

matrix of the inertial structure with respect to the mobile reference system located in the body, can be 

expressed as: 

 

R  =  [

𝐶𝛹𝐶𝜃 𝐶𝛹𝑆𝜃𝑆𝜙 − 𝑆𝛹𝐶𝜙 𝐶𝛹𝑆𝜃𝐶𝜙 + 𝑆𝛹𝑆𝜙

𝑆𝛹𝐶𝜃 𝑆𝛹𝑆𝜃𝑆𝜙 + 𝐶𝛹𝐶𝜙 𝑆𝛹𝑆𝜃𝐶𝜙 − 𝐶𝛹𝑆𝜙

−𝑆𝜃 𝐶𝜃𝑆𝜙 𝐶𝜃𝐶𝜙

]                                                                                  (4) 

 

𝑅𝑇 = [

𝐶𝛹𝐶𝜃 𝑆𝛹𝐶𝜃 −𝑆𝜃

𝐶𝛹𝑆𝜃𝑆𝜙 − 𝑆𝛹𝐶𝜙 𝑆𝛹𝑆𝜃𝑆𝜙 + 𝐶𝛹𝐶𝜙 𝐶𝜃𝑆𝜙

𝐶𝛹𝑆𝜃𝐶𝜙 + 𝑆𝛹𝑆𝜙 𝑆𝛹𝑆𝜃𝐶𝜙 − 𝐶𝛹𝑆𝜙 𝐶𝜃𝐶𝜙

]                                                                                (5)  

 

Once the rotation matrix is known, the kinematic rotation equations can be established, which allow 

determining the relationships between the angular velocities of the AUV expressed in both reference axes.  

Relating the derivative of the orthonormal matrix and its orthonormality property, the angular velocity 

vector, with respect to the coordinate axes of the body, is related to the generalized velocities (�̇�,�̇�, �̇�), 

where the Euler angles are valid. Using the Wη transformation matrix 
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W η   =[

1 0 −𝑆𝜃

0 𝐶𝜙 𝐶𝜃𝑆𝜙

0 −𝑆𝜙 𝐶𝜃𝐶𝜙

]                                (6) 

 

 with the condition that Wη can be inverted whenever θ ≠ (2k-1)π/2, (k  Z), its inverse will be used since 

these values are not reached during maneuvers with an autonomous underwater vehicle. pitch angle 

values. Thus the transformation matrix for angular velocities from the inertial to the body frame is Wη 

and from the body to the inertial frame is Wη -1.  

 

Then expressing the matrix: 

 

 

W η -1   = [

1 𝑆𝜙𝑇𝜃 𝐶𝜙𝑇𝜃

0 𝐶𝜙 −𝑆𝜙

0 𝑆𝜙 𝐶𝜃⁄ 𝐶𝜙 𝐶𝜃⁄
]                                                                                                                  (7) 

 

 

Assigning: Ј1(η)=R   y  Ј2(η) = Wη-1 ,     can be expressed 𝐽(η) as indicated in the equation  (6). 

 

𝐽(η)  = [
Ј1(𝜂) 0

0 Ј2(𝜂)
]                        (8) 

 

      Ј(𝜂) =

[
 
 
 
 
 
 
 
𝐶𝛹𝐶𝜃 𝐶𝛹𝑆𝜃𝑆𝜙 − 𝑆𝛹𝐶𝜙 𝐶𝛹𝑆𝜃𝐶𝜙 + 𝑆𝛹𝑆𝜙 0 0 0

𝑆𝛹𝐶𝜃 𝑆𝛹𝑆𝜃𝑆𝜙 + 𝐶𝛹𝐶𝜙 𝑆𝛹𝑆𝜃𝐶𝜙 − 𝐶𝛹𝑆𝜙 0 0 0

−𝑆𝜃 𝐶𝜃𝑆𝜙 𝐶𝜃𝐶𝜙 0 0 0

0 0 0 1 𝑆𝜙𝑡𝜃 𝐶𝜙𝑡𝜃
0 0 0 0 𝐶𝜙 −𝑆𝜙

0 0 0 0
𝑆𝜙

𝐶𝜃

𝐶𝜙

𝐶𝜃 ]
 
 
 
 
 
 
 

                  (9) 
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2.3 Linear velocity of the AUV. 

Remembering that the coordinates of the center of mass of the vehicle with respect to the inertial 

reference system are given by the vector η (1): 

η = [
𝜂1

𝜂2
]           con η1= [x,y,z]T                y  η2 = [φ, θ, ψ] T 

 

The time derivative of η1 is the speed of the center of mass of the vehicle (origin of the mobile reference 

system) expressed about the inertial reference axis. 

Being 1 the speed of the center of mass of the vehicle OA (origin of the mobile coordinate system) with 

respect to the origin of the inertial reference system, expressed with respect to the mobile reference axis, 

the conversion between and �̇�1  y 1   can be established by means of the transformation matrix Ј1(η), so 

that the linear velocity of the vehicle measured in coordinates of the inertial frame, can be expressed as 

the linear velocity of the vehicle in coordinates of the body frame. 

 

 𝜂1̇  =  Ј1(η) υ1    con     υ1  = [𝑢 𝑣 𝑤]T                                                                               (10) 

 

Then, with Ј1(η)=R, replacing in equation (10), by the rotation matrix R, the components of the AUV 

velocity in inertial coordinates are obtained, as: 

 

[
�̇�
�̇�
�̇�

]  =  [

𝒄(𝝍) 𝒄(𝜽 ) 𝒄(𝝍)𝒔(𝝓)𝒔(𝜽) − 𝒄(𝝓)𝒔(𝝍) 𝒔(𝝓)𝒔(𝝍) + 𝒄(𝝓)𝒄(𝝍)𝒔(𝜽)

𝒄(𝜽)𝒔(𝝍 𝒄(𝝓)𝒄(𝝍) + 𝒔(𝝓)𝒔(𝝍)𝒔(𝜽) 𝒄(𝝓)𝒔(𝝍)𝒔(𝜽) − 𝒄(𝝍)𝒔(𝝓)

−𝒔(𝜽) 𝒄(𝜽)𝒔(𝝓) 𝒄(𝝓)𝒄(𝜽 ) 

] [
𝒖
𝒗
𝒘

]                       (11) 

 

 

 

2.4 Angular velocity of the AUV 

The time derivative of η2, where η2 = [φ, θ, ψ] T, determines the angular velocity of the center of mass of 

the AUV, with respect to the inertial frame, expressed with respect to the fixed reference axis. 

Remembering that the angular velocities of the mobile reference system with respect to the inertial 

system, referred to the mobile reference system, are given by ω = [𝑝 𝑞 𝑟]T, and that the relationship 

between the inertial and mobile reference systems is established through the transformation Ј2 (η), with 

Ј2(η) = Wη -1, and using equation (7), it is possible to express the variation in time of the angles ϕ, θ and 

ψ.    

 

[

�̇�

�̇�
�̇�

] = [

1 𝑆𝜙𝑇𝜃 𝐶𝜙𝑇𝜃

0 𝐶𝜙 −𝑆𝜙

0 𝑆𝜙 𝐶𝜃⁄ 𝐶𝜙 𝐶𝜃⁄
] [

𝑝
𝑞
𝑟
]                                                      (12) 

 

Since it is a discontinuous function, this result will be valid for any angle θ, such that:    

 θ ≠ (2k-1)/2,  (k  Z). 

 

 

�̇� = p + q senϕ tanθ + r cosϕ tanθ 

�̇� = q cosϕ – r senϕ                                                                          (13) 

�̇� = q senϕ secθ + r cosϕ secθ 
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The derivatives (�̇�,�̇�, �̇�)  are distinct from the AUV angular velocities in the rigid body coordinate system 

(p, q, r). To obtain the relationship between the angular velocities in the system of axes attached to the 

leather, with the variation in time of the angles of ϕ, θ and ψ, the previous matrix given in equation (12) is 

inverted, so that the Rotational motion of the AUV is defined by the components of the angular velocities 

in the three axes: roll angular rate (p), pitch angular rate (q), and yaw angular rate (r), about the xA, yA, 

and axes. zA respectively as: 

 

[
𝑝
𝑞
𝑟
] = [

1 0 −𝑆𝜃

0  𝐶𝜙 𝐶𝜃𝑆𝜙

0 −𝑆𝜙 𝐶𝜃𝐶𝜙

] [

ϕ̇

θ̇

ψ̇

]                                      (14) 

 

Note that for small angles p, q, r are approximately equal to �̇�,�̇�,�̇�, which is observed if the previous 

equations for small angles are solved. Thus, the resulting matrices expressed according to equation (6), 

can be expressed as: 

 

[
 
 
 
 
 
�̇�
�̇�
�̇�
�̇�
�̇�

�̇�]
 
 
 
 
 

= [Ј(𝜂)]

[
 
 
 
 
 
𝑢
𝑣
𝑤
𝑝
𝑞
𝑟 ]
 
 
 
 
 

                  (15) 

 

 

Ј(𝜂) =

[
 
 
 
 
 
 
 
𝐶𝛹𝐶𝜃 𝐶𝛹𝑆𝜃𝑆𝜙 − 𝑆𝛹𝐶𝜙 𝐶𝛹𝑆𝜃𝐶𝜙 + 𝑆𝛹𝑆𝜙 0 0 0

𝑆𝛹𝐶𝜃 𝑆𝛹𝑆𝜃𝑆𝜙 + 𝐶𝛹𝐶𝜙 𝑆𝛹𝑆𝜃𝐶𝜙 − 𝐶𝛹𝑆𝜙 0 0 0

−𝑆𝜃 𝐶𝜃𝑆𝜙 𝐶𝜃𝐶𝜙 0 0 0

0 0 0 1 𝑆𝜙𝑡𝜃 𝐶𝜙𝑡𝜃
0 0 0 0 𝐶𝜙 −𝑆𝜙

0 0 0 0
𝑆𝜙

𝐶𝜃

𝐶𝜙

𝐶𝜃 ]
 
 
 
 
 
 
 

 

 

 

 

Summarizing, the speeds of the AUV with respect to the inertial axes can be expressed as: 

 

�̇�  = 𝑢[𝑐(𝜓)𝑐(𝜃)] −  𝑣[𝑐(𝜙)𝑠(𝜓) − 𝑐(𝜓)𝑠(𝜙)𝑠(𝜃)] + 𝑤[𝑠(𝜙)𝑠(𝜓) + 𝑐(𝜙)𝑐(𝜓)𝑠(𝜃)] 

�̇�  = 𝑢[𝑐(𝜃)𝑠(𝜓)] +  𝑣[𝑐(𝜙)𝑐(𝜓) + 𝑠(𝜙)𝑠(𝜓)𝑠(𝜃)] − 𝑤[𝑠(𝜙)𝑐(𝜓) − 𝑐(𝜙)𝑠(𝜓)𝑠(𝜃)] 

 �̇�  = −𝑢[𝑠(𝜃)] +  𝑣[𝑐(𝜃)𝑠(𝜙)] + 𝑤[𝑐(𝜙)𝑐(𝜃)]   

  �̇� = p + q senϕ tanθ + r cosϕ tanθ   

  �̇� = q cosϕ – r senϕ   

  �̇� = q senϕ secθ + r cosϕ secθ 

 

 

This also allows us to express the linear and angular velocities in the three axes: 

 

u = �̇�[𝑐(𝜓)𝑐(𝜃)] + �̇�[𝑐(𝜙)𝑠(𝜓)] – 𝑧 ̇ [𝑠(𝜃)] 

v = 𝑥 ̇  [𝑐(𝜓)𝑠(𝜙)𝑠(𝜃) - c(ϕ)s(𝜓)] + �̇� [𝑐(𝜓)𝑐(𝜙) + 𝑠(𝜓)𝑠(𝜙)𝑠(𝜃)]  �̇� [𝑠(𝜙)𝑐(𝜃)] 

𝑤 = �̇� [𝑠(𝜓)𝑠(𝜙) +  𝑐(𝜓)𝑐(𝜙)𝑠(𝜃) + �̇� [𝑠(𝜓)𝑐(𝜙)𝑠(𝜃) − 𝑐(𝜓)𝑠(𝜙) + �̇�[𝑐(𝜙)𝑐(𝜃)] 

p =  �̇� - �̇�[s(θ)] 

q = �̇�[c(ϕ)] + �̇�[c(θ)s(ϕ)] 

r = - �̇�[s(ϕ)] + �̇�[c(ϕ)c(θ)] 
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In the case of having the data of the speed of the current with respect to the system fixed to the AUV, the 

speed of the current with respect to the ground can be expressed, according to equation (3), as:  

 

 υc =  𝑱(𝜼) -1 ( η) 𝜼�̇�     

3.- Dynamics of Underwater Vehicles 

The dynamic model of an AUV describes the relationship between the movements of the vehicle and the 

forces exerted on it. 

In this way, the external forces necessary for the vehicle to move in a certain way can be calculated, or on 

the contrary, the movement generated by the external forces to which the AUV is subject can be 

determined. 

To obtain the equations of motion, it is assumed that the vehicle is a rigid body and that the fixed 

reference system to Earth is inertial. The first of this assumption allows not to take into account, for this 

analysis, the forces that act in a specific way between the mass elements, while the second eliminates the 

forces caused by the relative movement of the Earth in space [4]. 

The forces and moments to which the AUV is subjected, considering it as a rigid body, will be called as: 

X, forces along the x axis, Y, forces along the y axis, Z, forces along the z axis, K, Moments in the x axis, 

M, Moments in the y axis, N, Moments in the z axis 

 

3.1 Equations of motion 

The equations that represent the movement of a body in a three-dimensional space can be obtained from 

the conservation laws of the linear and angular moments of the mobile referred to an inertial reference 

system. 

The resultant moment with respect to the center of mass of the rigid body of all the forces exerted on it 

(kinetic momentum theorem) [7] is: 

 

  ∑𝐹 =  
𝑑(𝐺 )

𝑑(𝑡)
     ;                                 (16) 

 

With 𝐺  momentum of the system  , 𝐺 =  ∑𝑚𝑖 𝑣𝑖⃗⃗⃗   . 
 

 

Considering the constant mass of the AUV, the sum of forces is expressed as: 

 

 

∑𝐹 =  𝑚
𝑑(�⃗� )

𝑑(𝑡)
                                   (17) 

 

where ∑𝐹   is the sum of external forces on the system applied at the center of mass of the body. The 

derivative is performed with respect to a system of inertial axes. It is an absolute derivative. The velocity 

vector is also an absolute vector, which may be projected onto the desired reference system, either 

absolute or relative. 

 

The resulting moment ∑�⃗⃗� 𝑐   about the center of mass of the rigid body of all the forces exerted on it 

(Kinetic Momentum Theorem) [7] is: 
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�⃗⃗� 𝐶 =
𝑑(�⃗⃗� )

𝑑(𝑡)
con     �⃗⃗� = 𝐼𝐶 �⃗⃗�         y   �⃗⃗� = [𝑝, 𝑞, 𝑟]T                                                               (18) 

 

Where �⃗⃗� c is the moment of the forces around the center of mass, �⃗⃗�   is the kinetic moment about said 

center of mass, its derivative is also absolute, and 𝐼𝐶is the inertia matrix of the vehicle. 

 

 

 The inertia matrix IC  R3x3 for a rigid body with respect to its center of mass is defined as: 

 

𝐼𝐶  =   [−

𝐼𝑥 −𝐼𝑦𝑥 −𝐼𝑥𝑧

𝐼𝑦𝑥 𝐼𝑦 −𝐼𝑦𝑧

−𝐼𝑧𝑥 −𝐼𝑧𝑦 𝐼𝑧

]  ,             𝐼𝐶  = 𝐼𝐶
𝑇  > 0                                                  (19) 

 

 

where Ix , Iy , and Iz are the moments of inertia with respect to the axes attached to the body and the 

products of inertia Ixy = Iyx , Ixz = Izx , Iyz = Izy . 

 

𝐼𝑥  =  ∫(𝑦2  +  𝑧2)
𝑉

 𝜌𝑚 𝑑𝑉 ; 

𝐼𝑦  =  ∫(𝑥2  +  𝑧2)
𝑉

 𝜌𝑚 𝑑𝑉 ; 

𝐼 𝑧 = ∫(𝑥2  +  𝑦2)
𝑉

 𝜌𝑚 𝑑𝑉 ; 

𝐼𝑥𝑦  =  ∫𝑥𝑦 
𝑉

 𝜌𝑚 𝑑𝑉 =  ∫𝑥𝑦 
𝑉

 𝜌𝑚 𝑑𝑉 =  𝐼𝑦𝑥 

𝐼𝑥𝑧  =  ∫𝑥𝑧 
𝑉

 𝜌𝑚 𝑑𝑉 = ∫𝑧𝑥 
𝑉

 𝜌𝑚 𝑑𝑉 =  𝐼𝑧𝑥 

𝐼𝑦𝑧  =  ∫ 𝑦𝑧
𝑉

 𝜌𝑚 𝑑𝑉 = ∫𝑧𝑦 
𝑉

 𝜌𝑚 𝑑𝑉 =  𝐼𝑧𝑦 

 

 

 

To establish the equations of movement of the rigid body, the position vector is defined, of the 

center of mass (OA) of the body, with respect to the axes fixed to the ground considered inertial, as  

𝑟 𝐺/𝑂𝑇 .   According to Figure 2 

  

 𝑟 𝐺/𝑂𝑇  =  𝑟 𝑂𝐴/𝑂𝑇  +  𝑟 𝐺/𝑂𝐴                                                     (20) 

 

 
Figure 2 
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Deriving equation (20) with respect to time, we obtain:  

 
𝑑

𝑑𝑡
 𝑟 𝐺/𝑂𝑇  =  𝑟 ̇𝑂𝐴/𝑂𝑇  +  (

𝑑

𝑑𝑡
 𝑟 𝐺/𝑂𝐴  + �⃗⃗�  ˄𝑟 𝐺/𝑂𝐴  ) ,  con        

𝑑

𝑑𝑡
 𝑟 𝐺/𝑂𝐴  = 0  y,   

𝑣 𝐺/𝑂𝑇  =  𝑣 𝑂𝐴/𝑂𝑇  + �⃗⃗�  ˄𝑟 𝐺/𝑂𝐴 

 

Then:     ∑𝐹 =  𝑚
𝑑(�⃗� )

𝑑(𝑡)
  

             𝐹𝐺  = 𝑚(𝑣 ̇𝐺/𝑂𝑇  + �⃗⃗�  ˄ 𝑣 𝐺/𝑂𝐴)           

 

 

𝐹𝐺 = 𝑚[�̇�𝐺/𝑂𝐴  + 𝑆(𝜔) 𝑣𝐺/𝑂𝑇] , con   𝑆(𝜔)𝑣𝐺/𝑂𝑇 = 𝜔 ˄ 𝑣𝐺/𝑂𝑇                 (21) 

                                               

 

If the rotation of the vehicle and the moments to which it is subjected are analyzed using the kinetic 

momentum theorem, it is observed that the resulting moment∑𝑀𝐺 
⃗⃗ ⃗⃗ ⃗⃗    with respect to the center of mass 

(OA) of the vehicle, of all the forces that are exerted on it, is: 

 

�⃗⃗⃗� 
𝐺  =

𝑑(�⃗⃗� )

𝑑(𝑡)
 =  

𝑑

𝑑𝑡
(𝐼𝐺  �⃗⃗� ) 

= 
𝑑

𝑑𝑡
(𝐼𝐺  �⃗⃗� )  +  �⃗⃗�  ˄ (𝐼𝐺  �⃗⃗� ) 

= (𝐼𝐺  �⃗⃗̇� )  − (𝐼𝐺  �⃗⃗� ) ˄ �⃗⃗�   

 

 which can be expressed, :                       𝑆(𝐼𝐺𝜔) 𝜔 =  (𝐼𝐺𝜔)˄ 𝜔   

𝐼𝐺  �̇� − 𝑆(𝐼𝐺𝜔) 𝜔 =  𝑀𝐺 

 

 

The Newton-Euler equations can be written in matrix form as: 

 

𝑀𝑅𝐴   [
�̇�𝑮/𝑶𝑻

𝑤�̇�
]  +  𝐶𝑅𝐴 [

𝑣𝑮/𝑶𝑻

𝑤𝑏
] = [

𝐹𝐺

 𝑴𝐺
]                                   

 [
𝑚𝐼3∗3 03∗3

03∗3 𝐼𝐺
]  [

�̇�𝑮/𝑶𝑻

𝑤�̇�
]  +  [

𝑚𝑆𝑤𝑏 03∗3

03∗3 −𝑆(𝐼𝐺𝑤𝑏)
] [

𝑣𝑮/𝑶𝑻

𝑤�̇�
] = [

𝐹𝐺

𝑴𝐺
]                        (22) 

 

 

The inertia matrix MRA is expressed in the following form: 

 

𝑀𝑅𝐴  =  [
𝑚𝐼3𝑥3 −𝑚𝑆(𝑟𝐺)

𝑚𝑆(𝑟𝐺) 𝐼𝐺
]                                             (23) 

 

 

 where m is the mass of the AUV, IG the inertia matrix of the vehicle, I3x3 the moments of inertia about 

the principal axes of inertia, rG = [xG, yG , zG]T the vector that determines the location of the origin (OA) 

with respect to the center of gravity of the vehicle and S(λ) is the symmetric matrix, such that: 

 

 

𝑆(𝜆) =  [

0 −𝜆3 𝜆2

𝜆3 0 −𝜆1

−𝜆2 𝜆1 0
]  ,   𝑆(𝜆)  =  −𝑆𝑇 (𝜆)                                   (24) 

 

 

 

With which the mass matrix MRA is determined by: 



 

 

 

 

Research Journal of Pure Science and Technology E-ISSN 2579-0536 P-ISSN 2695-2696  

Vol 6. No. 1 2023 www.iiardjournals.org 

 

 

 

 

 

IIARD – International Institute of Academic Research and Development 

 

Page 37 

 

𝑀𝑅𝐴  =  

[
 
 
 
 
 
 

𝑚 0 0 0 𝑚𝑧𝐺 −𝑚𝑦𝐺

0 𝑚 0 −𝑚𝑧𝐺 0 𝑚𝑥𝐺

0 0 𝑚 𝑚𝑦𝐺 −𝑚𝑥𝐺 0
0 −𝑚𝑧𝐺 𝑚𝑦𝐺 𝐼𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧

𝑚𝑧𝐺 0 −𝑚𝑥𝐺 −𝐼𝑦𝑥 𝐼𝑦 −𝐼𝑦𝑧

−𝑚𝑦𝐺 𝑚𝑥𝐺 0 −𝐼𝑧𝑥 −𝐼𝑧𝑦 𝐼𝑧 ]
 
 
 
 
 
 

                                     (25) 

 

 

 

Then the rigid body Coriolis matrix (CRA), can be expressed as: 

 

 

𝐶𝑅𝐴 = [
03∗3 −𝑚𝑆(𝑣)

−𝑚𝑆(𝑣) −𝑆(𝐼𝑤)
]                                                       (26) 

 

 

𝐶𝑅𝐴 (𝑣) = [
03 −𝑆(𝑀𝑅11𝑣1 + 𝑀𝑅12𝑣2)

−𝑆(𝑀𝑅11𝑣1 + 𝑀𝑅12𝑣2)  −𝑆(𝑀𝑅21𝑣1 + 𝑀𝑅22𝑣2)
]                               (27) 

 

 

 

𝐶𝑅𝐴 () =

 

[
 
 
 
 
 
 

0 0 0 𝑚(𝑦𝐺𝑞 + 𝑧𝐺𝑟) −𝑚(𝑥𝐺𝑞 − 𝑤)  –𝑚(𝑥𝐺𝑟 + 𝑣)
0 0 0 −𝑚(𝑦𝐺𝑝 + 𝑤) 𝑚(𝑧𝐺𝑟 + 𝑥𝐺𝑝) –  𝑚(𝑦𝐺𝑟 −  𝑢)
0 0 0  𝑚(𝑣 − 𝑧𝐺𝑝) −𝑚𝑢 − 𝑚𝑧𝐺𝑞 𝑚(𝑥𝐺𝑝 + 𝑦𝐺𝑞) 

−𝑚(𝑦𝐺𝑞 + 𝑧𝐺𝑟) 𝑚(𝑦𝐺𝑝 + 𝑤) −𝑚𝑣 + 𝑚𝑧𝐺𝑝 0  −𝐼𝑦𝑧𝑞𝑥𝑧 − 𝐼𝑥𝑧𝑝 + 𝐼𝑧𝑧𝑟 𝑦𝑝 + 𝐼𝑦𝑧𝑟 − 𝐼𝑦𝑦𝑞

𝑚(𝑥𝐺𝑞 − 𝑤) −𝑚(𝑧𝐺𝑟 + 𝑥𝐺𝑝)  𝑚𝑢 + 𝑚𝑧𝐺𝑞  𝐼𝑦𝑧𝑞 + 𝐼𝑥𝑧𝑝 − 𝐼𝑧𝑧𝑟 0 −𝐼𝑥𝑦𝑞 + 𝐼𝑥𝑥𝑝 − 𝐼𝑥𝑧𝑟

𝑚(𝑥𝐺  𝑟 + 𝑣) –𝑚(𝑦𝐺𝑟 − 𝑢) −𝑚(𝑥𝐺𝑝 + 𝑦𝐺𝑞) −𝐼𝑦𝑧𝑟 − 𝐼𝑥𝑦𝑝 − 𝐼𝑦𝑦𝑞 𝐼𝑥𝑦𝑞 − 𝐼𝑥𝑥𝑝 + 𝐼𝑥𝑧𝑟 0 ]
 
 
 
 
 
 

 

(28) 

 

 

 

Finally, the equations of motion of a rigid body moving in space with respect to a system of inertial axes 

are obtained, as: 

 

 

𝑋 = 𝑚[�̇� – 𝑣𝑟 + 𝑤𝑞 − 𝑥𝑔 (𝑞
2 + 𝑟2) + 𝑦𝑔(𝑝𝑞 − �̇�) + 𝑧𝑔(𝑝𝑟 + �̇�)] 

𝑌 = 𝑚[�̇� – 𝑤𝑝 + 𝑢𝑟 − 𝑦𝑔 (𝑝
2 + 𝑟2) + 𝑧𝑔(𝑟𝑞 − �̇�) + 𝑥𝑔(𝑝 + �̇�)] 

𝑍 = 𝑚[�̇� – 𝑢𝑞 + 𝑣𝑝 − 𝑧𝑔 (𝑝
2 + 𝑞2) + 𝑥𝑔(𝑝𝑟 − �̇�) + 𝑦𝑔(𝑞𝑟 + �̇�)] 

𝐾 = 𝐼𝑥𝑥�̇� + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑞𝑟 − (�̇� +  𝑝𝑞)𝐼𝑥𝑧 + (𝑟2 − 𝑞2)𝐼𝑦𝑧 + (𝑝𝑟 − �̇�)𝐼𝑥𝑦

+ 𝑚[𝑦𝑔(�̇� − 𝑢𝑞 + 𝑣𝑝) − 𝑧𝑔(�̇� −  𝑤𝑝 + 𝑢𝑟)] 

𝑀 = 𝐼𝑦𝑦�̇� + (𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑝𝑟 − (�̇� +  𝑟𝑞)𝐼𝑥𝑦 + (𝑝2 − 𝑟2)𝐼𝑧𝑥 + (𝑝𝑞 − �̇�)𝐼𝑦𝑧

+ 𝑚[𝑧𝑔(�̇� − 𝑣𝑟 + 𝑤𝑝) − 𝑥𝑔(�̇� −  𝑢𝑞 + 𝑣𝑝)] 

𝑁 = 𝐼𝑧𝑧�̇� + (𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑞𝑝 − (�̇� +  𝑝𝑟)𝐼𝑦𝑧 + (𝑞2 − 𝑝2)𝐼𝑥𝑦 + (𝑞𝑟 − �̇�)𝐼𝑧𝑥

+ 𝑚[𝑥𝑔(�̇� − 𝑤𝑝 + 𝑢𝑟) − 𝑦𝑔(�̇� −  𝑣𝑟 + 𝑤𝑞)] 
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 Generalizing these equations for a point O of joint axes to the body that does not coincide with the center 

of mass of the rigid body and performing the corresponding calculations, the motion equations can be 

written in matrix form as expressed in equation (29): 

 

 

[
𝐹0

𝑴0
]  = 𝑀𝑅 [

�̇�0

�̇�𝑏
] +  𝐶𝑅 (𝑣0 , 𝑤𝑏) [

𝑣0

𝑤𝑏
]                  (29)             

 

 

 

 

3.2 General movement of an AUV 

Below are presented, from a Lagrangian approach, the equations of motion for bodies submerged in 

water. The movement of an AUV is the result of the action of the forces acting on it in a viscous fluid 

medium. These forces are mainly inertial forces, hydrodynamics and restorative forces. 

 

3.2.1 Euler-Lagrange equations. 

The description of vehicle dynamics with six degrees of freedom is commonly developed from a 

Lagrangian approach. Therefore, the kinetic energy and potential energy, called T and V respectively, are 

considered for the deduction of the equations of motion of the AUV, with respect to the inertial system. 

The application of Lagrange mechanics gives rise to n differential equations corresponding to n 

generalized coordinates (x, θ, φ, etc). 

 

The Lagrangian L is the sum of the translational kinetic energies Etrans and the rotational energy Erot minus 

the potential energy Epot : 

 

𝑳 = 𝑻 – 𝑽                                                                                                         (30) 

𝐿(𝜂, �̇�) = 𝐸𝑡𝑟𝑎𝑛𝑠 + 𝐸𝑟𝑜𝑡 −  V     con      𝑇 = 𝐸𝑡𝑟𝑎𝑛𝑠 + 𝐸𝑟𝑜𝑡  ,                               (31)             

 

 

The equations that represent the movement of the vehicle in a three-dimensional space can be obtained 

from the laws of conservation of linear and angular momenta referred to an inertial reference system as 

previously developed [4]. Newton's second law can be expressed using the Lagrangian, for any coordinate 

system fixed to the body as: 

 

𝑀𝑅𝐴  𝑣  ̇ +  𝐶𝑅𝐴(𝑣)𝑣 + 𝑀𝐴  �̇�   +  𝐶𝐴 𝑣 + 𝐷(𝑣)𝑣 + 𝑔(𝜂) =  𝜏𝑅𝐴                               (32) 

 

 

 Where, MRA is the inertia matrix determined from the configuration of symmetry of the AUV, 

considering its structure similar to an elongated ellipsoid with uniform mass distribution, CRA represents 

the Coriolis matrix, MA is the inertia matrix of the added mass, CA is the Coriolis matrix including the 

added mass, D(v) the damping matrix and the vector g(η) represents the restoring forces, composed of the 

force of gravity and the buoyant force. With   𝜏𝑅𝐴 = 𝜏𝑑ℎ  +  𝜏𝑚  +  𝜏𝑃  ; where   𝜏𝑑ℎ  y  𝜏𝑠ℎand are the 

moments generated by the hydrodynamic forces, the moments generated by the effects of wind and 

waves, and the torques produced by the propellers or any other force exerted on the AUV. 

 

The velocity vector υ is the generalized velocity 𝜐 = [𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟]𝑇where  𝑢, 𝑣, 𝑤 are the linear 

components of pitch, roll, and roll and 𝑝, 𝑞, 𝑟 are the angular components of roll, pitch, and yaw. 

generalized moments: 𝜏𝑖  = [𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖 , 𝐾𝑖 , 𝑀𝑖 , 𝑁𝑖]  
𝑇   𝑖 =  (ℎ𝑑,𝑚, 𝑝) 
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 It is observed that equation (32) can be obtained by applying the Lagrangian equation, 

 

𝑑

𝑑𝑡
 (

𝜕𝐿

𝜕�̇�
)  −  

𝜕𝐿

𝜕𝜂
 =  𝜏𝑅𝐴 ,      𝐿 = 𝑇 – 𝑉    and    𝑇 =  𝑇𝑅𝐴  +  𝑇𝐴 = 

1

2
  �̇�𝑇 𝑀(𝜂) �̇�     

 

 

 where M = MRA + MA (the inertia matrix including the added mass matrix) 

 
𝜕𝑇

𝜕𝜂
=

1

2
�̇�𝑇 𝜕𝑀(𝜂)

𝜕𝜂
�̇�,            

𝜕𝑉

𝜕𝜂
= 𝑔(𝜂) 

 

The vector g(η) represents the restoring forces (composed of the force of gravity and the force of 

buoyancy). Then: 

 

𝜕𝐿

𝜕𝜂
 =  

𝜕𝑇

𝜕𝜂
  −  

𝜕𝑉

𝜕𝜂
 =   

1

2
 �̇�𝑇  

𝜕𝑀(𝜂)

𝜕𝜂
 �̇�  −  𝑔(𝜂) 

 
𝜕𝐿

𝜕�̇�
 = 𝑀(𝜂)�̇�  −  

𝜕𝑉

𝜕�̇�
 =   𝑀(𝜂)�̇�   ,    

𝑑

𝑑𝑡
 (

𝜕𝐿

𝜕�̇�
) = 𝑀(𝜂)�̈�  + �̇�(𝜂)�̇�  

�̇�(𝜂)  =  �̇�𝑇  
𝜕𝑀(𝜂)

𝜕𝜂
 

 

Replacing      𝑀(𝜂)�̈�  +  
1

2
 �̇�(𝜂)�̇�  +  𝑔(𝜂) =  𝜏𝑅𝐴                                             (33) 

 

Analyzing the moments of the different forces acting on the AUV detailed in the equation. 𝜏𝑅𝐴 = 𝜏𝑑ℎ  +

 𝜏𝑚  +  𝜏𝑃 . Hydrodynamic moments are called 𝜏𝑑ℎ, generated by the drag forces that oppose the 

movement and act in the opposite direction to the movement of the AUV, generating the generalized drag 

matrix D(v), so the energy dissipated in this case can be considered as: 

 
𝜕𝐷𝑑

𝜕�̇�
= 𝐷(𝑣, 𝜂)�̇�                                                                      (34) 

 

Substituting equation (34) in equation (33), we obtain: 

 

𝑀(𝜂)�̈� +
1

2
�̇�(𝜂)�̇� + 𝐷(𝑣, 𝜂)�̇� + 𝑔(𝜂) = 𝜏                 (35) 

 

where 𝜏 =  [𝜏𝑋 , 𝜏𝑌 , 𝜏𝑍 , 𝜏𝐾 , 𝜏𝑀 , 𝜏𝑁  ] T  is the input vector representing the forces exerted by the thrusters 

(or any other force-generating element) on the AUV. 

 

It is observed that the term  
1

2
 �̇�(𝜂) represents the matrix of centrifugal and Coriolis forces of the 

submerged rigid body and the added mass, 

 

𝐶(𝑣, 𝜂) =
1

2
 �̇�(𝜂)                                                                (36) 

 

 

 Thus the dynamic model of an underwater vehicle can be written in its compact form as shown below: 

 

𝑴 𝒗  ̇ +  𝑪(𝒗)𝒗 + 𝑫(𝒗)𝒗 + 𝒈(𝜼) =   𝝉                                                                    (37) 
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where: M = MRA + MA , is the inertia matrix including the added mass, and C(v) = CRA + CA is the 

Coriolis matrix, including the added mass. 

 

 

3.2.2 Added mass matrix 

The apparent increase in the mass and in general of the inertial properties of a body immersed in a fluid is 

known as added mass. When a body moves in a fluid, a certain amount of fluid must move around it. 

When the body accelerates, then the fluid must also accelerate. Therefore, more force is required to 

accelerate the body in a fluid than in a vacuum. Since force is related to mass and acceleration, we can 

think of the additional force in terms of an imaginary addition of mass to the object in the fluid. 

 

The added masses are the forces and moments induced by the pressure due to the accelerated motion of 

the body. These forces and moments are proportional to the acceleration of the vehicle [8]. In such a way 

that any movement of the AUV will cause a movement of the stationary fluid in the opposite direction. In 

completely submerged vehicles it is usually assumed that the added mass coefficients are constant [1]. In 

this case, the analysis is restricted to submerged vehicles that move at low speed and bodies with three 

planes of symmetry are considered, which allows not taking into account the elements of the MA matrix 

that are outside the main diagonal [9]. This facilitates the calculation of MA since elements that are not 

part of the main diagonal are very difficult to calculate, analytically. 

 

These added mass coefficients are defined as the proportionality constants, which relate the linear and 

angular accelerations with each of the forces and hydrodynamic moments that they generate. Thus, the 

hydrodynamic force along the x-axis due to acceleration in the x-direction is expressed as: 

 

𝑋𝐴 = −𝑋�̇��̇�     where    𝑋�̇� =
𝜕𝑋

𝜕�̇�
                                                       (38) 

 

Similarly, all other added mass coefficients can be defined for a vehicle whose acceleration components 

are ((𝑢,̇  𝑣 ,̇ �̇�, 𝑝 ̇ , 𝑞 ̇ , �̇�)). Conforming the added mass matrix as a square matrix of order 6: 

 

𝑀𝐴 = −

[
 
 
 
 
 
 
𝑋�̇� 𝑋�̇� 𝑋�̇� 𝑋�̇� 𝑋�̇� 𝑋�̇�

𝑌�̇� 𝑌�̇� 𝑌�̇� 𝑌�̇� 𝑌�̇� 𝑌�̇�

𝑍�̇� 𝑍�̇� 𝑍�̇� 𝑍�̇� 𝑍�̇� 𝑍�̇�

𝐾�̇� 𝐾�̇� 𝐾�̇� 𝐾�̇� 𝐾�̇̇� 𝐾�̇�

𝑀�̇� 𝑀�̇� 𝑀�̇� 𝑀�̇� 𝑀�̇� 𝑀�̇�

𝑁�̇� 𝑁�̇� 𝑁�̇� 𝑁�̇� 𝑁�̇� 𝑁�̇� ]
 
 
 
 
 
 

                                     (39) 

 

 This matrix can be expressed in terms of four submatrices: 

 

𝑀𝐴  =  [
𝑀𝐴11 𝑀𝐴12

𝑀𝐴21 𝑀𝐴22
]                                                    (40) 

 

  

Finally the matrix M= MRA + MA can be written as: 
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𝑀 = 

[
 
 
 
 
 
 

𝑚 + 𝑋�̇� 𝑋�̇� 𝑋�̇� 𝑋�̇�  𝑚𝑧𝑐 + 𝑋�̇� −𝑚𝑦𝑐 + 𝑋�̇� 

𝑌�̇� 𝑚 + 𝑌�̇� 𝑌�̇� −𝑚𝑧𝑐 + 𝑌�̇� 𝑌𝑞 𝑚𝑥𝑐 + 𝑌�̇� 

𝑍�̇� 𝑍�̇� 𝑚 + 𝑍�̇� 𝑚𝑦𝑐 + 𝑍�̇�   −𝑚𝑥𝑐 + 𝑍 �̇�  𝑍�̇�

𝐾�̇� −𝑚𝑧𝑐 + 𝐾�̇� 𝑚𝑦𝑐 + 𝐾�̇�   𝐼𝑥   +𝐾�̇� −𝐼𝑥𝑦  +𝐾�̇� 𝐼𝑥𝑧  +𝐾�̇� 

𝑚𝑧𝑐 + 𝑀�̇�  𝑀�̇� 𝑚𝑥𝑐 + 𝑀�̇�  −𝐼𝑥𝑦   +𝑀�̇�   𝐼𝑦  +𝑀�̇� −𝐼𝑦𝑧  +𝑀�̇�

−𝑚𝑦𝑐 + 𝑁�̇� 𝑚𝑥𝑐 + 𝑁�̇�  𝑁�̇� −𝐼𝑥𝑦   +𝑁�̇� −𝐼𝑦𝑥   +𝑁�̇� 𝐼𝑧  +𝑁�̇�  ]
 
 
 
 
 
 

          (41) 

 

 

 

3.2.3 Centripetal and Corioli Forces 

The Coriolis matrix, C(v), is composed of two components, the Coriolis and centripetal matrix of the rigid 

body, CRA(v), and the Coriolis matrix of the added mass, CA(v). It is given by the following expression: 

 

C(v)=CRA+CA(v)                                                                    (42) 

 

The Coriolis matrix relative to the hydrodynamic effects derived from the added mass to the system is 

calculated from the added mass matrix and the operator S(λ). If the symmetric matrix ASim, is 

considered, its product with the velocity vector υ determines the coefficients of S(λ). 

 

𝐴𝑆𝑖𝑚 =

[
 
 
 
 
 
 
𝑋�̇� 𝑋�̇� 𝑋�̇� 𝑋�̇� 𝑋�̇� 𝑋�̇�

𝑌�̇� 𝑌�̇� 𝑌�̇� 𝑌�̇� 𝑌�̇� 𝑌�̇�

𝑍�̇� 𝑍�̇� 𝑍�̇� 𝑍�̇� 𝑍�̇� 𝑍�̇�

𝐾�̇� 𝐾�̇� 𝐾�̇� 𝐾�̇� 𝐾�̇̇� 𝐾�̇�

𝑀�̇� 𝑀�̇� 𝑀�̇� 𝑀�̇� 𝑀�̇� 𝑀�̇�

𝑁�̇� 𝑁�̇� 𝑁�̇� 𝑁�̇� 𝑁�̇� 𝑁�̇� ]
 
 
 
 
 
 

                                                                  (43) 

 

And the added mass Coriolis matrix: 

  

𝐶𝐴 = [
03∗3 −𝑆(𝐴11𝑣 + 𝐴12𝑤)

−𝑆(𝐴11𝑣 + 𝐴12𝑤) −𝑆(𝐴21𝑣 + 𝐴22𝑤  
]                                         (44) 

 

 𝐶𝐴  (𝑣) =  

[
 
 
 
 
 
 

0 0 0 0 −𝑍�̇�𝑤  𝑌�̇�𝑣
0 0 0 −𝑍�̇�𝑤 0 −𝑋�̇�𝑢
0 0 0 −𝑌�̇�𝑣 𝑋�̇�𝑢 0
0 − 𝑍�̇�𝑤  𝑌�̇�𝑣 0 − 𝑁�̇�𝑟  𝑀�̇�𝑞

𝑍�̇�𝑤 0 −𝑋�̇�𝑢 𝑁�̇�𝑟 0 −𝐾�̇�𝑝

−𝑌�̇�𝑣 𝑋�̇�𝑢 0 −𝑀�̇�𝑞 𝐾�̇�𝑝 0 ]
 
 
 
 
 
 

                  (45) 

 

 

  

4.- Hydrodynamic damping. 

Underwater vehicles are affected by hydrodynamic damping, which is caused by linear and quadratic 

friction due to the presence of laminar and turbulent flows, and by quadratic resistance [10]; [11].  

The forces and moments related to damping are a function of the relative motion of the fluid. In the areas 

where AUVs usually operate, the flow is turbulent. Under these conditions the friction due to the drag 

force causes linear and quadratic effects. The total drag resistance is defined as the sum of its linear and 

quadratic components. On the one hand, the quadratic terms of the lift or lift force (DQ) and on the other 

hand, the linear terms of the friction force (DL) [4].  
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Given the low speeds of the AUV under study and its symmetry, a simplification in the parameters of the 

hydrodynamic damping force is proposed, which consists of taking the main diagonal of the matrix of 

linear terms and the matrix of quadratic terms. 

 

D = DL + DQ(v)                  (46) 

 

Where, DL is a 6×6 matrix that groups the linear damping terms and DQ (v) includes the quadratic 

coefficients [9]. 

 

𝐷𝐿  = {𝑋𝑢 , 𝑌𝑣 , 𝑍𝑤  , 𝐾𝑝 , 𝑀𝑞 , 𝑁𝑟  } , 𝐷𝑄 = {𝑋𝑢|𝑢| , 𝑌𝑣|𝑣| , 𝑍𝑤|𝑤| , 𝐾𝑝|𝑝|, 𝑀𝑞|𝑞| , 𝑁𝑟|𝑟|}  

 

𝐷(𝑣) =

[
 
 
 
 
 
 
𝑋𝑢+𝑋𝑢|𝑢||𝑢| 0 0 0 0 0

0 𝑌𝑣+𝑌𝑣|𝑣||𝑣| 0 0 0 0

0 0 𝑍𝑤+𝑍𝑤|𝑤||𝑤| 0 0 0

0 0 0 𝐾𝑝+𝐾𝑝|𝑝||𝑝| 0 0

0 0 0 0 𝑀𝑞+𝑀𝑞|𝑞||𝑞| 0

0 0 0 0 0 𝑁𝑟+𝑁𝑟|𝑟||𝑟|]
 
 
 
 
 
 

                 (47) 

 

 

The elements that make up this diagonal structure can be determined from experiments [12]; [13]. on the 

case of determining the linear and quadratic terms in X. 

 

  

𝑋 = −(
1

2
 𝜌𝐶𝑑𝐴𝑓) 𝑢|𝑢| = 𝑋𝑢|𝑢||𝑢|                                             (48) 

 

where        𝑋𝑢|𝑢| =
𝜕𝑋

𝜕𝑢|𝑢|
= −

1

2
 𝜌𝐶𝑑𝐴𝑓                                             (49) 

 

Where ρ is the density of the water, Cd is the coefficient of resistance and Af is the surface area of the 

vehicle facing the flow. 

 

  

 

4.1 Hydrostatic terms 

In hydrodynamics, gravitational and buoyancy forces are known as restoring forces [9]. Gravitational 

forces act at the center of gravity of the vehicle, whose coordinates are defined by the vector rG = [xG; yG; 

zG]T . On the other hand, in the center of buoyancy, defined by  rA = [xA; yA; zA]  , the buoyancy forces act. 

The weight of a submerged body can be determined as 𝑊 = 𝑚𝑔 , where: (W) is the weight of the vehicle 

(N); m is the mass of the vehicle (kg) and g is the gravitational constant (m/s2). The push or buoyancy 

force is defined as  𝐸 =  𝜌𝑔𝑉 , with: (E) is the push received by the body; (N) ρ is the density of the 

displaced fluid (kg/m3): (g) is the gravitational constant (m/s2) and (V) is the volume of displaced fluid 

(m3). The distance between the (CG) and (CA) of the vehicle is defined by the vector: 

 

rG = [xG; yG; zG]T = [xG – xA; yG – yA; zG – zA]T .   

 

 

Then transferring the weight and the thrust of the body to the mobile reference system (OA): 
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𝑓𝑊 = 𝑅𝑇 [
0
0
𝑊

],   𝑓𝐸 = −𝑅𝑇 [
0
0
𝐸
]                                                             (50) 

 

 

Con  𝑅𝑇 = [

𝐶𝛹𝐶𝜃 𝑆𝛹𝐶𝜃 −𝑆𝜃

𝐶𝛹𝑆𝜃𝑆𝜙 − 𝑆𝛹𝐶𝜙 𝑆𝛹𝑆𝜃𝑆𝜙 + 𝐶𝛹𝐶𝜙 𝐶𝜃𝑆𝜙

𝐶𝛹𝑆𝜃𝐶𝜙 + 𝑆𝛹𝑆𝜙 𝑆𝛹𝑆𝜃𝐶𝜙 − 𝐶𝛹𝑆𝜙 𝐶𝜃𝐶𝜙

] 

  

𝑓𝑊 = [

𝐶𝛹𝐶𝜃 𝑆𝛹𝐶𝜃 −𝑆𝜃

𝐶𝛹𝑆𝜃𝑆𝜙 − 𝑆𝛹𝐶𝜙 𝑆𝛹𝑆𝜃𝑆𝜙 + 𝐶𝛹𝐶𝜙 𝐶𝜃𝑆𝜙

𝐶𝛹𝑆𝜃𝐶𝜙 + 𝑆𝛹𝑆𝜙 𝑆𝛹𝑆𝜃𝐶𝜙 − 𝐶𝛹𝑆𝜙 𝐶𝜃𝐶𝜙

] [
0
0
𝑊

] ;   𝑓𝑊  = [

−𝑆𝜃W
𝐶𝜃𝑆𝜙W

𝐶𝜃𝐶𝜙

]              (51) 

 

𝑓𝐸 = [

𝐶𝛹𝐶𝜃 𝑆𝛹𝐶𝜃 −𝑆𝜃

𝐶𝛹𝑆𝜃𝑆𝜙 − 𝑆𝛹𝐶𝜙 𝑆𝛹𝑆𝜃𝑆𝜙 + 𝐶𝛹𝐶𝜙 𝐶𝜃𝑆𝜙

𝐶𝛹𝑆𝜃𝐶𝜙 + 𝑆𝛹𝑆𝜙 𝑆𝛹𝑆𝜃𝐶𝜙 − 𝐶𝛹𝑆𝜙 𝐶𝜃𝐶𝜙

] [
0
0
𝐸
];        𝑓𝐸 = [

−𝑆𝜃E
𝐶𝜃𝑆𝜙E

𝐶𝜃𝐶𝜙E
]             (52) 

 

 

 

 

The vector of gravitational forces is expressed as a function of the coordinate system (OA) located in the 

AUV, remembering that the positive z axis was considered in the direction of the earth's surface, it is 

expressed as: 

 

𝑔(𝜂) = − [
𝑓𝑊 + 𝑓𝐸

𝑟𝐺 × 𝑓𝑊 + 𝑟𝐴 × 𝑓𝐸
]                                    (53) 

 

where rG is the vector that relates the center of gravity to the moving reference axis and rA is the vector 

that relates the moving reference axis to the inertial one. 

Replacing in equation (53) by the forces obtained in equations (51) and (52) the vector of gravitational 

forces is obtained, as: 

 

𝑔(𝜂) =

[
 
 
 
 
 
 

𝑆𝜃(𝑊 − 𝐸)

𝐶𝜃𝑆𝜙(𝐸 − 𝑊)

𝐶𝜃𝐶𝜙(𝐸 − 𝑊)

(𝑦𝐴𝐸 − 𝑦𝐺𝑊)𝐶𝜃𝐶𝜙 + (𝑧𝐺𝑊 − 𝑧𝐴𝐸)𝐶𝜃𝑆𝜙

(−𝑥𝐴𝐸 + 𝑥𝐺𝑊)𝐶𝜃𝐶𝜙 + (𝑧𝐺𝑊 − 𝑧𝐴𝐸)𝑆𝜃

(𝑥𝐴𝐸 − 𝑥𝐺𝑊)𝐶𝜃𝑆𝜙 − (𝑦𝐺𝑊 − 𝑦𝐴𝐸)𝑆𝜃 ]
 
 
 
 
 
 

              (54) 

 

 

 

5. - Description of the experimental vehicle 

The model presented is an underwater robot that is structurally designed to be built using a 3D printer. 

The different watertight compartments that make it up allow the easy assembly of electronic devices and 

components, batteries, cameras, motors, etc. Which facilitates their exchange according to experimental 

needs. 

As can be seen in Figure 3, it has a watertight vertical cylinder where the main components are located. It 

has five engines with their respective nozzles located on the periphery of the cylinder and a camera 

located at the front of the AUV. To improve the hydrodynamic behavior of the design, it is proposed to 
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provide the structure with a hemispherical casing as indicated in Figure 4. Its dimensions are 48 x 30 x 20 

cm with an approximate weight of 10 kg. Mechanically it was designed to be stable. 

 

Figure 3 shows a CAD design of the internal structure of the AUV and Figure 4 shows this 

same structure with its corresponding hull and defines the inertial reference system, with origin at the OT 

point, and the system of coordinates attached to the AUV, originating from a point belonging to the 

vehicle coinciding with its center of mass (OA) and A = [�⃗� A ,𝐲 A, 𝐳 A]   attached to the AUV, where  xA; yA  

axes;  and zA are made to coincide with the axes of inertia of the AUV. The axis �⃗� A  is taken to be 

coincident with the direction of advance of the AUV,  𝐲 A is orthogonal to �⃗� A,  while 𝐳 A is oriented 

downward and orthogonal to the �⃗� A 𝐲 A.plane. 

 
Figure 3                                                              Figure 4 

 

5.2 Description of the movement of the vehicle. 

The vehicle is made up of five propellers that produce forces and torques, which are arranged on the 

central structure in the following way: three in a vertical position, two in front and one in the back, which 

are applied for movements of elevation, pitch and roll and the other two on the sides of the cylinder, one 

on the right side and one on the left side, to control the forward, yaw and roll movements. The angle 

between the longitudinal direction and the direction of the force of the lateral thrusters is 30°. 

By design, the AUV is symmetrical in two of its axes and is mechanically stable in roll angle, which 

means that lateral displacement is small. It has five control inputs, where fi is the force of each thruster. 

The effect of these forces on the vehicle depends on their magnitude and their point of application. 

As previously developed, the movement of the vehicle can be defined with the six components of position 

and attitude in the six degrees of freedom of the AUV, referred to an inertial frame, according to: 

 

η = [𝜂1
𝑇 , 𝜂2

𝑇]𝑇       ; η1= [x,y,z]T          ;η2 = [φ, θ, ψ] T 

v = [𝑣1
𝑇 , 𝑣2

𝑇]𝑇       ; v1= [u,v,w]T          ;v2 = [p, q, r] T                                                                                          (55) 

𝜏= [𝜏1
𝑇 , 𝜏2

𝑇]𝑇      ;  𝜏 1= [X,Y,Z]T      ; 𝜏 2 = [K, M, N] T 

 

where η is the position and orientation vector with coordinates in the inertial reference system, v 

represents the linear and angular velocity in the frame fixed to the body and 𝝉 the external forces and 

moments acting on the body. 

 

The dynamic model of the AUV, as previously developed in section 3.2, can be represented from the 

following Newton-Euler equations of motion. 

 

𝑴�̇� + 𝑪(𝒗)𝒗 + 𝑫(𝒗)𝒗 + 𝒈(𝜼) = 𝝉               (56)

   

 

�̇�=  Јη(υ)                                                                                                    (57) 
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where, M represents the inertia matrix (including added mass), 𝑪(𝒗) includes the terms Coriolis and 

centripetal force (including added mass), 𝑫(𝒗)describes the hydrodynamic damping matrix, 𝒈(𝜼)is the 

vector of gravitational force and buoyancy, represents the vector of control inputs and Јη is the kinematic 

transformation between the body and the inertial frame. 

 

 

5.2.1 Inertia matrix 

Some simplifications on the AUV dynamics are made, to facilitate the study of the model dynamics. It 

can be assumed that the AUV is symmetrical in the three planes of movement, since the vehicle works at 

a low speed, using 1m/sec as a maximum value. In the case of the experimental design, the AUV is 

symmetric with respect to the x-z plane and nearly symmetric with respect to the x-y plane. Although the 

AUV is not totally symmetric with respect to the y-z plane, due to its low speed, it is assumed that the 

vehicle is symmetric with respect to this plane, which allows decoupling the degrees of freedom. 

Likewise, the vehicle remains almost horizontal in all maneuvers and is stabilized, since the center of 

gravity and the center of buoyancy are correctly aligned. The Ixy crossed moments of inertia; Iyx; Iyz; 

Izy are negligible due to the symmetry of the AUV. 

 

It is implemented that the thrust is slightly greater than the weight, this exerts an upward force of 

approximately 0.4% of the weight. This similarity between the forces is obtained since the model has 

been designed and the necessary auxiliary masses have been introduced for this to be true. 

 

Table 2 presents the main parameters of the AUV, considering the geometry of the vehicle, its properties 

and the main characteristics of the materials to be used in the construction. To simplify the calculation of 

the inertia tensor, it is considered that the center of inertia coincides with the geometric center of the body. 

 

 

 Properties Values   Units  Symbols 

 AUV Dimensions 48x24x12 m l x b x h 

 AUV mass  10,23 Kg m 

 Inertia tensor in x       0,052 Kg.m2          Ixx 

  Inertia tensor in y 0,12 Kg.m2 Iyy 

Inertia tensor in z 0,16 Kg.m2 Izz 

 

Table 2: Physical parameters of the AUV 

 

Considering that the vehicle will move at very low speed, some damping parameters and added mass can 

be estimated using Solidworks.. With these considerations, the MRA matrix obtained in equations (25) 

can be written as: 
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𝑀𝑅𝐴  =  

[
 
 
 
 
 
𝑚 0 0 0 0  0
0 𝑚 0 0 0  0
0 0 𝑚  0  0 0
0 0  0 𝐼𝑥  0 0
0 0  0  0 𝐼𝑦  0

 0  0 0 0  0 𝐼𝑧]
 
 
 
 
 

                                                                     (58) 

 

𝑀𝑅𝐴  =  

[
 
 
 
 
 
10,23 0 0 0 0  0

0 10,23 0 0 0  0
0 0 10,23  0  0 0
0 0  0 0,052  0 0
0 0  0  0 0,12  0
 0  0 0 0  0 0,16]

 
 
 
 
 

                                         (59) 

 

 

   

5.2.2 Added mass 

There is a vehicle that operates at low speed and that has three planes of symmetry, since the terms of the 

added mass matrix depend on the format of the AUV, these characteristics make it possible to not take 

into account the elements of the MA matrix, expressed according to the equation (39) that are outside the 

main diagonal [9].  

So that the expressions to determine the matrices MA and CA(υ) can be simplified as: 

 

𝑀𝐴 = −𝑑𝑖𝑎𝑔{𝑋�̇� , 𝑌�̇� , 𝑍�̇� , 𝐾�̇�, 𝑀�̇� , 𝑁�̇�},               (60) 

 

There is a set of mathematical expressions that allow calculating the coefficients of the diagonal structure 

of MA [1]. They are applicable to those vehicles whose geometric shape is similar to an elongated 

spheroid. The current design of the AUV under study allows an approximation to an elongated spheroid. 

Assuming that the vehicle under study has the shape of a prolate ellipsoid, and approximating its 

symmetry in the three spatial directions, the distance between the horizontal thrusters, perpendicular to 

the direction of advance in the x-axis, is taken as the dimension b in the x-direction. of the y-axis of the 

ellipsoid. Thus the principal semiaxis of the ellipsoid is the total length of the vehicle a and the secondary 

semiaxis has dimension b. 

 

The added mass matrix parameters are constant when the vehicle is completely submerged. These 

parameters are generally in the neighborhood of 10% to 100% of the corresponding parameters in the 

rigid body mass matrix [14]. Values of 𝑋�̇�=-6.73kg ,�̇�=−6.721𝑘𝑔, Z�̇�= -5.56kg = -0.001kg.m2 and 

𝑀𝑞 ̇=𝑁�̇�= −0.01220 𝑘𝑔 𝑚2 have been obtained. The results obtained are consistent, since they account for 

between 10% and 70% of the magnitude of the vehicle's mass, which coincides with other studies carried 

out on autonomous vehicles. 

The inertia matrix, including the added masses for the AUV, is expressed as the sum of equations (58) and 

(60), as can be seen in equation (61). 

 

𝑀 = 𝑀𝑅𝐴 + 𝑀𝐴 =

[
 
 
 
 
 
16,96 0 0 0 0 0

0 16,95 0 0 0 0
0 0 15,79 0 0 0
0 0 0 0,053 0 0
0 0 0 0 0,132 0
0 0 0 0 0 0,172 ]

 
 
 
 
 

             (61) 
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5.2.3 Coriolis matrix 

The Coriolis and centripetal matrix of the rigid body, CRA(v) is obtained by substituting in equation (28) 

the values of the vehicle under study. 

  

𝐶𝑅𝐴 ()  =  

[
 
 
 
 
 

0 0 0 0 𝑚𝑤  0 − 𝑚𝑣
0 0 0 −𝑚𝑤 0  𝑚𝑢
0 0 0  𝑚𝑣 −𝑚𝑢 0
0 𝑚𝑤 −𝑚𝑣 0  𝐼𝑧𝑧𝑟 −𝐼𝑦𝑦𝑞

𝑚𝑤 0  𝑚𝑢  −𝐼𝑧𝑧𝑟 0  𝐼𝑥𝑥𝑝
 𝑚𝑣 −𝑚𝑢 0 𝐼𝑦𝑦𝑞 −𝐼𝑥𝑥𝑝 0 ]

 
 
 
 
 

                                  (62) 

 

𝐶𝑅𝐴 ()  =  

[
 
 
 
 
 

0 0 0 0 10,23𝑤  −10,23𝑣
0 0 0 −10,23𝑤 0  10,23𝑢
0 0 0  10,23𝑣 −10,23𝑢 0
0 10,23𝑤 −10,23𝑣 0  0,16𝑟 −0,12𝑞

10,23𝑤 0  10,23𝑢  −0,16𝑟 0  0,052𝑝
 10,23𝑣 −10,23𝑢 0 0,12𝑞 −0,052𝑝 0 ]

 
 
 
 
 

             (63) 

 

 

             

The Coriolis matrix, relative to the hydrodynamic effects derived from the mass added to the system, can 

be calculated from the previous matrix and from theoperator S(λ). If the symmetric matrix ASim is 

considered, according to equation (43), its product with the velocity vector υ determines the coefficients 

of S(λ). Taking the main diagonal of the added mass matrix, the added mass Coriolis matrix, substituting 

into equation (44), is expressed as: 

 

 

𝐶𝐴  (𝑣) =  

[
 
 
 
 
 
 

0 0 0 0 −𝑍�̇�𝑤  𝑌�̇�𝑣
0 0 0 −𝑍�̇�𝑤 0 −𝑋�̇�𝑢
0 0 0 −𝑌�̇�𝑣 𝑋�̇�𝑢 0
0 − 𝑍�̇�𝑤  𝑌�̇�𝑣 0 − 𝑁�̇�𝑟  𝑀�̇�𝑞

𝑍�̇�𝑤 0 −𝑋�̇�𝑢 𝑁�̇�𝑟 0 −𝐾�̇�𝑝

−𝑌�̇�𝑣 𝑋�̇�𝑢 0 −𝑀�̇�𝑞 𝐾�̇�𝑝 0 ]
 
 
 
 
 
 

                                         (64) 

 

𝐶𝐴  (𝑣) =  

[
 
 
 
 
 

0 0 0 0 5,56𝑤 −6,721𝑣
0 0 0 5,56𝑤 0 6,73𝑢
0 0 0 6,721𝑣 −6,73𝑢 0
0 5,56𝑤 −6,721𝑣 0 0,0122𝑟 −0,0122𝑞

−5,56𝑤 0 6,73𝑢 −0,0122𝑟 0 0,001𝑝
6,721𝑣 −6,73𝑢 0 0,0122𝑞 −0,001𝑝 0 ]

 
 
 
 
 

           (65) 

 

  

Performing the sum of equations (63) and (65) the Coriolis matrix is obtained, including the Coriolis 

matrix of added mass, as C(υ) = CRA(υ) + CA(υ) results: 

 

 𝑪() =  

[
 
 
 
 
 
 

𝟎 𝟎 𝟎 𝟎 (𝒎 − 𝒁�̇�)𝒘 −(𝒎 + 𝒀�̇�)𝒗  

𝟎 𝟎 𝟎 − (𝒎 + 𝒁�̇�)𝒘 𝟎 (𝒎 − 𝑿�̇�)𝒖 

𝟎 𝟎 𝟎 (𝒎 + 𝒀�̇�)𝒗 −(𝒎 + 𝑿�̇�)𝒖 𝟎

𝟎 (𝒎 − 𝒁�̇�)𝒘 −(𝒎 + 𝒀�̇�)𝒗 + 𝟎  (𝑰𝒛𝒛 − 𝑵𝒓)̇𝒓 −(𝑰𝒚𝒚 + 𝑴�̇�)𝒒

−(𝒎 + 𝒁�̇�)𝒘 𝟎 (𝒎 − 𝑿�̇�)𝒖  −𝑰𝒛𝒛𝒓 𝟎 ( 𝑰𝒙𝒙 − 𝑲�̇�)𝒑

(𝒎 + 𝒀�̇�)𝒗  −(𝒎 + 𝑿�̇�)𝒖 𝟎 (𝑰𝒚𝒚−𝑴�̇�)𝒒 −(𝑰𝒙𝒙 − 𝑲�̇�)𝒑 𝟎

   

]
 
 
 
 
 
 

               (66) 
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5.2.4 Hydrodynamic damping 

Considering the existing symmetry in the AUV, it is possible to establish the following mathematical 

relationships between several of the parameters of the matrix D(υ) [1], [10]: 

 

𝐷𝐿 = {𝑋𝑢, 𝑌𝑣 , 𝑍𝑤 , 𝐾𝑝, 𝑀𝑞 , 𝑁𝑟}, 𝐷𝑄 = {𝑋𝑢|𝑢|, 𝑌𝑣|𝑣|, 𝑍𝑤|𝑤|, 𝐾𝑝|𝑝|, 𝑀𝑞|𝑞|, 𝑁𝑟|𝑟|}  

 

𝑫(𝒗) =

[
 
 
 
 
 
 
𝑿𝒖+𝑿𝒖|𝒖||𝒖| 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝒀𝒗+𝒀𝒗|𝒗||𝒗| 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝒁𝒘+𝒁𝒘|𝒘||𝒘| 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝑲𝒑+𝑲𝒑|𝒑||𝒑| 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝑴𝒒+𝑴𝒒|𝒒||𝒒| 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝑵𝒓+𝑵𝒓|𝒓||𝒓|]
 
 
 
 
 
 

     (67) 

 

The terms related to linear and quadratic hydrodynamic damping are related to the drag force of the 

vehicle. The drag forces are calculated for the three axes at various speeds, taking 1m/s as the maximum 

speed value, as well as the respective moments. The calculation is carried out with the use of specialized 

simulation software and through iteration the convergence of the values is obtained. 

 

 

 

5.2.5 Hydrostatic Terms 

 

The matrix that contemplates the gravitational effects is defined by equation (54), for the vehicle under 

study the following considerations are made. In the first instance, it will be considered that the weight of 

the vehicle is equal to the thrust: W = E, in order to simplify the calculations, although in later stages it is 

proposed to give the AUV a weight slightly less than the thrust in order to easily recover the vehicle in the 

event of a failure in the propellants. The coordinate system is located in the center of mass of the vehicle 

and the center of flotation is coincident in the z axis with the center of gravity, considering zG – zA = AGz , 

then we consider the center of flotation as the origin of coordinates of the system local, for which the 

buoyant force will not produce moments, but the gravitational force will, for which substituting in 

equation (54), we obtain: 

 

𝑔(𝜂) =

[
 
 
 
 
 

0
0
0

𝐴𝐺𝑧𝑊𝐶𝜃𝑆𝜙

𝐴𝐺𝑧𝑊𝑆𝜃

0 ]
 
 
 
 
 

                                                                   (68) 

 

 

 

5.2.6 Propulsion Forces 

The vector τ can be calculated from the orientation and position matrix L and the force vector of the 

thrusters U. 
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𝜏 = 𝐿𝑈 (69)   ;      𝑈 =

[
 
 
 
 
𝑇1

𝑇2

𝑇3

𝑇4

𝑇5]
 
 
 
 

                                               (70) 

The L matrix is made up of six rows, to introduce the orientation unit vector (u) and the position vector (r) 

of each thruster, and five columns, as many as the number of thrusters.  

 

[
𝑢1 𝑢1 … 𝑢𝑁

𝑟1 𝑟2 … 𝑟𝑁
] 

 

The matrix L, for a number of thrusters equal to five, and their location according to Figure 4, has the 

following form: 

 

𝐿 =

[
 
 
 
 
 

𝑐𝑜𝑠𝛼 𝑐𝑜𝑠𝛼 0 0 0
−𝑠𝑒𝑛𝛼 𝑠𝑒𝑛𝛼 0 0 0

0 0 1 1 1
0 0 𝑙4 −𝑙4 0
0 0 𝑙3 𝑙3 −𝑙5

𝑙1𝑐𝑜𝑠𝛼 + 𝑙2𝑠𝑒𝑛𝛼 −𝑙1𝑐𝑜𝑠𝛼 − 𝑙2𝑠𝑒𝑛𝛼 0 0 0 ]
 
 
 
 
 

,                                            (71) 

 

 

Figure 4 shows the numbering of the AUV engines and the distances in which the engines are separated 

from the center of gravity. These distances are: L1= 14cm, L2= 13cm, L3= 13cm, L4= 10cm and L5= 

13cm. The angle α= 30°. 

 

 
Figure 5 

 

 

Substituting the previous values in equation (69) and performing the corresponding operations, the vector 

of forces and moments caused by the control inputs is obtained as expressed in equation (72). 

              𝜏 =

[
 
 
 
 
 
𝜏𝑥

𝜏𝑦

𝜏𝑧

𝜏𝐾

𝜏𝑀

𝜏𝑁]
 
 
 
 
 

=

[
 
 
 
 
 

(𝑇1 + 𝑇2)𝑐𝑜𝑠𝛼

(𝑇2 − 𝑇1)𝑠𝑒𝑛𝛼
𝑇4 + 𝑇3 + 𝑇5

(𝑇3 − 𝑇4)𝑙4
𝑇3𝑙3 + 𝑇4𝑙3 − 𝑇5𝑙5

(𝑇1−𝑇2 )(𝑙1𝑐𝑜𝑠𝛼 + 𝑙2𝑠𝑒𝑛𝛼)  ]
 
 
 
 
 

                                      (72) 

 

  

As can be seen, all the matrix terms that make up the non-linear model, with six degrees of freedom 

(6DOF), of the presented design responding to vectorial equation (37) are thus defined.  

 

Table 3 presents the main parameters of the vehicle considering the geometry of the AUV and that it will 

move at very low speed, calculated with the "SolidWork" program and the MATLAB "Simulink" tool. 
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Obtaining the 6 GDL model will allow, in subsequent studies, to synthesize the control loops that are 

desired to be implemented in the vehicle. 

 

 

Parameters Values  Units  Description 

𝑋�̇� -6,73 Kg added mass 

𝑋𝑢 -10 Kg/s linear damping 

𝑋𝑢∨𝑢∨ -14,6 kg/m axial drag 

𝑌�̇� -6,72 Kg added mass 

𝑌𝑣 -12 Kg/s linear damping 

𝑌𝑣∨𝑣∨ -16,6 kg/m axial drag 

𝑍�̇� -5,56 Kg added mass 

𝑍𝑤∨𝑤∨ -19,6 kg/m Cross Flow Drag 

𝑍𝑤 -17 Kg/s linear damping 

𝐾�̇� -0,001 Kg.m2 added mass 

𝐾𝑝 -1,4 Kg/s linear damping 

𝐾𝑝∨𝑝∨ -1,15 kg/m roll drag 

𝑀�̇� -0,012 Kg.m2 added mass 

𝑀𝑞 -1,6 Kg/s linear damping 

𝑀𝑞∨𝑞∨ -1,19 kg/m Cross Flow Drag 

𝑁�̇� -0,012 Kg.m2 added mass 

𝑁𝑟 -1,6 Kg/s linear damping 

𝑁𝑟∨𝑟∨ -1,19 kg/m Cross Flow Drag 

Table 3: Hydrodynamic parameters 

 

Counting on all the parameters of the 6 GDL model of the vehicle, its behavior can be analyzed through 

simulation using the TOOLBOX MSS tool belonging to MATLAB. 

 

 

 

6. Results obtained 

From a simulation with the MATLAB SIMULINK tool and using the parameters obtained in section 5, it 

was possible to visualize the dynamic characteristics of the AUV in a trajectory as shown in figure 6. 
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Figure 6. Simulated AUV trajectory 

 

 

For this trajectory, the velocities of each coordinate axis were obtained. 

 

 
Figure 7. Speed about the axis(1) 

 

 
Figure 8. Speed about the axis(2) 

 

 
Figure 9. Speed about the axis (3) 

 

 

The results obtained are consistent with works carried out on other AUVs with similar characteristics [11] 

and with other simulations [13]. 

 

7. Conclusions 

The study of the dynamic characteristics of the proposed vehicle allowed obtaining parameters to study its 

behavior through simulations that can be used to analyze the behavior of the AUV under different 

operating conditions, and thus, evaluate its performance and/or propose improvements. 
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